Guarded Cubical Type Theory

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Guarded Cubical Type Theory

Guarded dependent type theory [1] is a dependent type theory with guarded recursive types, which are useful for building models of program logics, and as a tool for programming and reasoning with coinductive types. This is done via a modality ., pronounced ‘later’, with a constructor next, and a guarded fixed-point combinator fix : (.A → A) → A. This combinator is used both to define guarded re...

متن کامل

Guarded Cubical Type Theory: Path Equality for Guarded Recursion

This paper improves the treatment of equality in guarded dependent type theory (GDTT), by combining it with cubical type theory (CTT). GDTT is an extensional type theory with guarded recursive types, which are useful for building models of program logics, and for programming and reasoning with coinductive types. We wish to implement GDTT with decidable type checking, while still supporting non-...

متن کامل

Cartesian Cubical Type Theory

We present a cubical type theory based on the Cartesian cube category (faces, degeneracies, symmetries, diagonals, but no connections or reversal) with univalent universes, each containing Π, Σ, path, identity, natural number, boolean, pushout, and glue (equivalence extension) types. The type theory includes a syntactic description of a uniform Kan operation, along with judgemental equality rul...

متن کامل

Cubical Type Theory

() : ∆→ () σ : ∆→ Γ ∆ ` u : Aσ (σ, x = u) : ∆→ Γ, x : A σ : ∆→ Γ ∆ ` φ : I (σ, i = φ) : ∆→ Γ, i : I σ : ∆→ Γ Γ ` A ∆ ` Aσ σ : ∆→ Γ Γ ` t : A ∆ ` tσ : Aσ We can define 1Γ : Γ→ Γ by induction on Γ and then if Γ ` u : A we write (x = u) : Γ→ Γ, x : A for 1Γ, x = u. If we have further Γ, x : A ` t : B we may write t(u) and B(u) respectively instead of t(x = u) and B(x = u). Similarly if Γ ` φ : I w...

متن کامل

Cubical Type Theory

The equality on the inverval I is the equality in the free bounded distributive lattice on generators i, 1− i. The equality in the face lattice F is the one for the free distributive lattice on formal generators (i = 0), (i = 1) with the relation (i = 0) ∧ (i = 1) = 0. We have [(r ∨ s) = 1] = (r = 1) ∨ (s = 1) and [(r∧s) = 1] = (r = 1)∧ (s = 1). An irreducible element of this lattice is a face,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Automated Reasoning

سال: 2018

ISSN: 0168-7433,1573-0670

DOI: 10.1007/s10817-018-9471-7